RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2019, том 16, страницы 481–492 (Mi semr1072)

Эта публикация цитируется в 4 статьях

Вещественный, комплексный и и функциональный анализ

Решение функциональных уравнений, связанных с эллиптическими функциями. II

А. А. Илларионовab

a Khabarovsk Division of the Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences, 54, Dzerzhinsky str., Khabarovsk, 680000, Russia
b Pacific National University, 136, Tihookeanskaya str., Khabarovsk, 680035, Russia

Аннотация: Let $s,m, d\in \mathbb{N}$, $s\ge 2$. We solve the functional equation
\begin{gather*} f_1(\mathbf{u}_1+\mathbf{v})\ldots f_{s-1}(\mathbf{u}_{s-1}+\mathbf{v})f_s(\mathbf{u}_1+\ldots +\mathbf{u}_{s-1}-\mathbf{v}) \\ =\sum_{j=1}^{m} \phi_j(\mathbf{u}_1,\ldots,\mathbf{u}_{s-1})\psi_j(\mathbf{v}), \end{gather*}
for unknown entire functions $f_1,\ldots,f_s:\mathbb{C}^d\to \mathbb{C}$, $\phi_j: (\mathbb{C}^d)^{s-1}\to \mathbb{C}$, $\psi_j: \mathbb{C}^d\to \mathbb{C}$ in the case of $m\le s+1$. All non-elementary solutions are described by the Weierstrass sigma-function. Previously, such results were known only for $s=2$, $m=1,2$, as well as for $d=1$, $s=2,3$. The considered equation arises in the study of polylinear functional-differential operators and multidimensional vector addition theorems.

Ключевые слова: addition theorem, functional equation, Weierstrass sigma-function, theta function, elliptic function.

УДК: 517.965, 517.583

MSC: 39B32, 33E05

Поступила 30 января 2019 г., опубликована 5 апреля 2019 г.

DOI: 10.33048/semi.2019.16.030



Реферативные базы данных:


© МИАН, 2024