Аннотация:
Let $\mathbb{P}^{\vee}$ be the semifield of positive real numbers with operations of max-addition and multiplication
and $U^{\vee}(X)$ be the semifield of continuous $\mathbb{P}^{\vee}$-valued functions on an arbitrary topological space $X$
with pointwise operation max-addition and multiplication.
We call a subset $A\subseteq U^{\vee}(X)$ a subalgebra if $f\vee g,$$fg,$$rf\in A$ for any $f, g\in A,$$r\in\mathbb{P}^{\vee}.$
We describe isomorphisms of lattices of subalgebras of semifields $U^{\vee}(X).$
Ключевые слова:semifield of continuous functions, subalgebra, isomorphism, lattice of subalgebras, Hewitt space, max-addition.