RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2019, том 16, страницы 1822–1832 (Mi semr1170)

Эта публикация цитируется в 3 статьях

Теория вероятностей и математическая статистика

A statistical test for the Zipf's law by deviations from the Heaps' law

M. G. Chebuninab, A. P. Kovalevskiicb

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
c Novosibirsk State Technical University, 20, K. Marksa ave., 630073, Novosibirsk, Russia

Аннотация: We explore a probabilistic model of an artistic text: words of the text are chosen independently of each other in accordance with a discrete probability distribution on an infinite dictionary. The words are enumerated 1, 2, $\ldots$, and the probability of appearing the $i$'th word is asymptotically a power function. Bahadur proved that in this case the number of different words as a function of the length of the text, again, asymptotically behaves like a power function. On the other hand, in the applied statistics community there are statements known as the Zipf’s and Heaps’ laws that are supported by empirical observations. We highlight the links between Bahadur results and Zipf's/Heaps' laws, and introduce and analyse a corresponding statistical test.

Ключевые слова: Zipf's law, Heaps' law, weak convergence.

УДК: 519.233

MSC: 62F03

Поступила 24 сентября 2019 г., опубликована 4 декабря 2019 г.

Язык публикации: английский

DOI: 10.33048/semi.2019.16.129



Реферативные базы данных:


© МИАН, 2024