Эта публикация цитируется в	
			1 статье
				
			
				
			Математическая логика, алгебра и теория чисел
			
				
				Точная верхняя граница рангов коммутантов конечных $p$-групп
			
			Б. М. Веретенников		 Ural Federal University, 19, Mira str., Ekaterinburg, 620002, Russia
					
			Аннотация:
			All groups in the abstract are finite. We define rank 
$d(G)$ of a 
$p$-group 
$G$
as the minimal number of generators of 
$G$.
Let 
$p$ be any prime number, 
$k_1, \dots, k_n$ – positive integers, 
$n \geq 2$.
By 
$D(k_1, \dots, k_n)$ we denote the number of sequences 
$i_1,\dots,i_k$ in which
$k \geq 2$,  
$i_1,\dots,i_k$ are positive integers from 
$[1,n]$, 
$i_1 > i_2$,
$i_2 \leq \dots \leq i_k$ and for any 
$j \in [1,n]$ number 
$j$ may not
occur in such sequences more than 
$(p^{k_j}-1)$ times.
We prove that for any 
$p$-group 
$G$ generated by elements
$a_1,\dots,a_n$ of orders 
$p_1^{k_1},\dots,p_n^{k_n}$ $(n \geq 2)$ the
inequality
$d(G') \leq D(k_1, \dots, k_n, p)$ is true and the equality in this inequality is attainable.
Also, we prove that for any 
$p$-group 
$G$ generated by elements
$a_1,\dots,a_n$ of orders 
$p_1^{k_1},\dots,p_n^{k_n}$ $(n \geq 2)$,
with elementary abelian commutator subgroup 
$G'$ the class of nilpotency of 
$G'$ does not exceed
$p_1^{k_1}+\dots+p_n^{k_n}-n$ and this upper bound is also attainable.
				
			
Ключевые слова:
			finite 
$p$-group generated by elements of orders 
$p_1^{k_1},\dots,p_n^{k_n}$, number of generators of commutator subgroup of a finite 
$p$-group, the class of nilpotency of of a finite 
$p$-group with elementary abelian commutator subgroup, definition of a group by means of generators and defining relations.	
			
УДК:
			512.54	
			MSC: 20B05	Поступила 20 сентября 2019 г., опубликована 
9 декабря 2019 г.	
			DOI:
			10.33048/semi.2019.16.134