Эта публикация цитируется в
1 статье
Математическая логика, алгебра и теория чисел
Точная верхняя граница рангов коммутантов конечных $p$-групп
Б. М. Веретенников Ural Federal University, 19, Mira str., Ekaterinburg, 620002, Russia
Аннотация:
All groups in the abstract are finite. We define rank
$d(G)$ of a
$p$-group
$G$
as the minimal number of generators of
$G$.
Let
$p$ be any prime number,
$k_1, \dots, k_n$ – positive integers,
$n \geq 2$.
By
$D(k_1, \dots, k_n)$ we denote the number of sequences
$i_1,\dots,i_k$ in which
$k \geq 2$,
$i_1,\dots,i_k$ are positive integers from
$[1,n]$,
$i_1 > i_2$,
$i_2 \leq \dots \leq i_k$ and for any
$j \in [1,n]$ number
$j$ may not
occur in such sequences more than
$(p^{k_j}-1)$ times.
We prove that for any
$p$-group
$G$ generated by elements
$a_1,\dots,a_n$ of orders
$p_1^{k_1},\dots,p_n^{k_n}$ $(n \geq 2)$ the
inequality
$d(G') \leq D(k_1, \dots, k_n, p)$ is true and the equality in this inequality is attainable.
Also, we prove that for any
$p$-group
$G$ generated by elements
$a_1,\dots,a_n$ of orders
$p_1^{k_1},\dots,p_n^{k_n}$ $(n \geq 2)$,
with elementary abelian commutator subgroup
$G'$ the class of nilpotency of
$G'$ does not exceed
$p_1^{k_1}+\dots+p_n^{k_n}-n$ and this upper bound is also attainable.
Ключевые слова:
finite
$p$-group generated by elements of orders
$p_1^{k_1},\dots,p_n^{k_n}$, number of generators of commutator subgroup of a finite
$p$-group, the class of nilpotency of of a finite
$p$-group with elementary abelian commutator subgroup, definition of a group by means of generators and defining relations.
УДК:
512.54
MSC: 20B05 Поступила 20 сентября 2019 г., опубликована
9 декабря 2019 г.
DOI:
10.33048/semi.2019.16.134