RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 218–226 (Mi semr1209)

Эта публикация цитируется в 1 статье

Вещественный, комплексный и и функциональный анализ

Isometries of spaces of $LOG$-integrable functions

R. Abdullaeva, V. Chilinb, B. Madaminovc

a Tashkent University of Information Technologies, Tashkent, 100200, Uzbekistan
b National University of Uzbekistan, Tashkent, 100174, Uzbekistan
c Urgench state Unversity, Urgench, 220100, Uzbekistan

Аннотация: We consider the $F$-space $(L_{\log}(\Omega, \mu), \|\cdot\|_{\log})$ of $\log$-integrable functions defined on measure space $(\Omega, \mu)$ with finite measure. We prove that $(L_{\log}(\Omega_1, \mu_1), \|\cdot\|_{\log})$ and $(L_{\log}(\Omega_2, \mu_2), \|\cdot\|_{\log})$ are isometric if and only if there exists a measure preserving isomorphism from $(\Omega_1, \mu_1)$ onto $(\Omega_2, \mu_2)$.

Ключевые слова: $F$-spaces, isometries, Boolean algebras, measure preserving isomorphisms, log-integrable functions.

УДК: 517.98

MSC: 46A16, 46B04, 46E30

Поступила 20 декабря 2019 г., опубликована 27 февраля 2020 г.

Язык публикации: английский

DOI: 10.33048/semi.2020.17.016



Реферативные базы данных:


© МИАН, 2024