RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 726–731 (Mi semr1245)

Эта публикация цитируется в 1 статье

Математическая логика, алгебра и теория чисел

Stability of the class of divisible $S$-acts

A. I. Krasitskaya

Far Eastern Federal University, 8, Sukhanova str., Vladivostok, 690090, Russia

Аннотация: We describe monoids $S$ such that the theory of the class of all divisible $S$-acts is stable, superstable or, for commutative monoid, $\omega$-stable. More precisely, we prove that the theory of the class of all divisible $S$-acts is stable (superstable) iff $S$ is a linearly ordered (well ordered) monoid. We also prove that for a commutative monoid $S$ the theory of the class of all divisible $S$-acts is $\omega$-stable iff $S$ is either an abelian group with at most countable number of subgroups or is finite and has only one proper ideal. Classes of regular, projective and strongly flat $S$-acts were considered in [1, 2]. Using results from [3] we obtain necessary and sufficient conditions for stability, superstability and $\omega$-stability of theories of classes of all divisible $S$-acts.

Ключевые слова: monoid, divisible $S$-act, stability, superstability, $\omega$-stability.

УДК: 510.67, 512.56

MSC: 18D35

Поступила 6 апреля 2019 г., опубликована 27 мая 2020 г.

Язык публикации: английский

DOI: 10.33048/semi.2020.17.050



Реферативные базы данных:


© МИАН, 2024