RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 1106–1127 (Mi semr1278)

Эта публикация цитируется в 5 статьях

Дифференциальные уравнения, динамические системы и оптимальное управление

Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives

D. K. Durdievab, Zh. D. Totievacd

a Bukhara State University, 11, Mukhammad Iqbol str., Bukhara, 200177, Uzbekistan
b Bukhara Department of the Mathematics Institute, Uzbekistan Academy of Sciences, Bukhara, 200177, Uzbekistan
c Southern Mathematical Institute of Vladikavkaz Scientific Centre, Russian Academy of Sciences, 93a, Markova str., Vladikavkaz, 362002, Russia
d North Ossetian State University, 46, Vatutina str., Vladikavkaz, 362025, Russia

Аннотация: The problem of determining the memory of a medium from a second-order equation of hyperbolic type with a constant principal part and variable coefficients for lower derivatives is considered. The method is based on the reduction of the problem to a non-linear system of Volterra equations of the second kind and uses the fundamental solution constructed by S. L. Sobolev for hyperbolic equation with variable coefficients. The theorem of global uniqueness, stability and the local theorem of existence are proved.

Ключевые слова: inverse problem, hyperbolic integro-differential equation, Volterra integral equation, stability, delta function, kernel.

УДК: 517.958

MSC: 35L20, 35R30, 35Q99

Поступила 9 февраля 2020 г., опубликована 18 августа 2020 г.

Язык публикации: английский

DOI: 10.33048/semi.2020.17.084



Реферативные базы данных:


© МИАН, 2024