RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 1270–1279 (Mi semr1287)

Дискретная математика и математическая кибернетика

Несуществование небольших $q$-полиномиальных графов типа (III)

А. А. Махневa, М. М. Исаковаb, А. А. Токбаеваb

a N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaya str., Yekaterinburg, 620990, Russia
b Kabardino-Balkarian State University named after H.M. Berbekov, 175, Chernyshevsky str., Nalchik, 360004, Russia

Аннотация: I.N. Belousov, A.A. Makhnev and M.S. Nirova found the description of $Q$-polynomial distance-regular graphs $\Gamma$ of diameter 3 such that $\Gamma_2$ and $\Gamma_3$ are strongly regular. Such graph has intersection array $\{t(c_2+1)+a_3,tc_2,a_3+1;1,c_2,t(c_2+1)\}$ and $(c_2+1)=a_3(a_3+1)/(t^2-a_3-1)$. $Q$-polynomial graph $\Gamma$ is the graph of type (I), if $a_3$ is devided by $c_2+1$, graph of type (II), if $a_3+1$ is devided by $c_2+1$, graph of type (III), if $a_3$ and $a_3+1$ does not devided by $c_2+1$.
In this paper it is proved that graph of type (III) with $t\le 6$ has intersection array $\{14,10,3;1,5,12\}$, $\{69,56,10;1,14,60\}$, $\{74,54,15;1, 9,60\}$, $\{87,66,16;1,11,72\}$, $\{119,100,15;1,20,105\}$ or $\{188,162,21;1, 27,168\}$.
Further it is proved that graphs of type (III) with intersection array $\{14,10,3;1,5,12\}$, $\{87,66,16;1,11,72\}$ and $\{188,162,21;1,27,168\}$ do not exist.

Ключевые слова: distance-regular graph, $Q$-polynomial graph, triple intersection numbers.

УДК: 519.17

MSC: 05C25

Поступила 19 июля 2020 г., опубликована 7 сентября 2020 г.

DOI: 10.33048/semi.2020.17.093



Реферативные базы данных:


© МИАН, 2025