Вещественный, комплексный и и функциональный анализ
Ergodic theorems in Banach ideals of compact operators
A. N. Azizov,
V. I. Chilin National University of Uzbekistan, 4, Universitet str., Tashkent, 100174, Uzbekistan
Аннотация:
Let
$\mathcal H$ be an infinite-dimensional Hilbert space, and let
$\mathcal B(\mathcal H)$ (
$\mathcal K(\mathcal H)$) be the
$C^\star$–algebra of all bounded (compact) linear operators in
$\mathcal H$. Let
$(E,\|\cdot\|_E)$ be a fully symmetric sequence space. If
$\{s_n(x)\}_{n=1}^\infty$ are the singular values of
$x\in\mathcal K(\mathcal H)$, let $\mathcal C_E=\{x\in\mathcal K(\mathcal H): \{s_n(x)\}\in E\}$ with
$\|x\|_{\mathcal C_E}=\|\{s_n(x)\}\|_E$,
$x\in\mathcal C_E$, be the Banach ideal of compact operators generated by
$E$. We show that the averages $A_n(T)(x)=\frac1{n+1}\sum\limits_{k = 0}^n T^k(x) $ converge uniformly in
$\mathcal C_E$ for any Dunford-Schwartz operator
$T$ and
$x\in\mathcal C_E$. Besides, if $0\leq x\in\mathcal B(\mathcal H)\setminus\mathcal K(\mathcal H)$, there exists a Dunford-Schwartz operator
$T$ such that the sequence
$\{A_n(T)(x)\}$ does not converge uniformly. We also show that the averages
$A_n(T)$ converge strongly in
$(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ if and only if
$E$ is separable and
$E \neq l^1$ as sets.
Ключевые слова:
symmetric sequence space, Banach ideal of compact operators, Dunford-Schwartz operator, individual ergodic theorem, mean ergodic theorem.
УДК:
517.98
MSC: 37A30,
46E30,
46L52,
47A35 Поступила 26 февраля 2021 г., опубликована
21 мая 2021 г.
Язык публикации: английский
DOI:
10.33048/semi.2021.18.039