Аннотация:
We study the one dimensional nonlinear damped wave equation
\begin{equation}
\begin{cases}
u_{tt}+u_{t}-u_{xx}=\lambda|u|^{\sigma}u,&x\in\mathbf{R},\quad t>0,\\
u(0,x)=u_0(x),& x\in\mathbf{R},\\
u_t(0,x)=u_1(x),& x\in\mathbf{R},
\end{cases}
\tag{0.1}
\end{equation}
where $\sigma>0$, $\lambda\in\mathbf R$. Our aim is to prove the large time asymptotic formulas for solutions of the Cauchy problem (0.1) without any restriction on the size of the initial data.