RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2023, том 20, выпуск 2, страницы 880–912 (Mi semr1617)

Дифференциальные уравнения, динамические системы и оптимальное управление

A Radon type transform related to the Euler equations for ideal fluid

V. A. Sharafutdinov

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Аннотация: We study the Nadirashvili – Vladuts transform $\mathcal{N}$ that integrates second rank tensor fields $f$ on ${\mathbb{R}}^n$ over hyperplanes. More precisely, for a hyperplane $P$ and vector $\eta$ parallel to $P$, ${\mathcal{N}}f(P,\eta)$ is the integral of the function $f_{ij}(x)\xi^i\eta^j$ over $P$, where $\xi$ is the unit normal vector to $P$. We prove that, given a vector field $v$, the tensor field $f=v\otimes v$ belongs to the kernel of $\mathcal{N}$ if and only if there exists a function $p$ such that $(v,p)$ is a solution to the Euler equations. Then we study the Nadirashvili – Vladuts potential $w(x,\xi)$ determined by a solution to the Euler equations. The function $w$ solves some 4th order PDE. We describe all solutions to the latter equation.

Ключевые слова: Euler equations, Nadirashvili – Vladuts transform, tensor tomography.

УДК: 517.9

MSC: Primary 76B03, 76V99; Secondary 53A45

Поступила 27 мая 2023 г., опубликована 26 октября 2023 г.

Язык публикации: английский

DOI: 10.33048/semi.2023.020.054



© МИАН, 2025