Дискретная математика и математическая кибернетика
Приближенные алгоритмы для задач о двух коммивояжерах и о двух цикловых покрытиях на максимум с двумя весовыми функциями
А. Н. Глебовa,
С. С. Лыловаb,
С. Г. Токтохоеваb a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova Street, 2, 630090, Novosibirsk, Russia
Аннотация:
We present new polynomial approximation algorithms for the
$2$-Perpatetic Salesman Problem and the
$2$-Cycle Cover Problem. The
$m$-Perpatetic Salesman Problem (
$m$-PSP) is a generalization of the classical Traveling Salesman Problem. In the
$m$-PSP, we need to find
$m$ edge disjoint Hamiltonian cycles of the extremal total weight in a complete weighted graph
$G=(V,E)$. In the
$m$-Cycle Cover Problem (
$m$-CC), we need to find
$m$ edge disjoint cycle covers of the extremal weight in
$G$. Many exact and approximation algorithms were proposed for the case of
$m$-PSP where we are given only one weight function
$w:E \rightarrow R^+$ and the weight of
$m$ Hamiltonian cycles
$H_1,H_2,\ldots,H_m$ is defined as
$w(H_1)+ \ldots +w(H_m)$. However, not so many results are known for the case when we are given
$m$ distinct weight functions
$w_1,w_2,\ldots,w_m$ and the weight of
$H_1,H_2,\ldots,H_m$ is defined as
$w_1(H_1)+w_2(H_2)+\ldots +w_m(H_m)$ (the
$m$-PSP-
$m$W problem). Here we present a series of polynomial algorithms with approximation ratios
$1/2$ and higher for the
$2$-PSP-max-2W. As a supporting result, we produce a polynomial algorithm with the asymptotic ratio
$\frac 23$ for the
$2$-CC-max-
$2W$ problem.
Ключевые слова:
Traveling Salesman Problem, $2$-Perpatetic Salesman Problem, Cycle Cover Problem, approximation algorithm, guaranteed approximation ratio, weight function.
УДК:
519.168, 519.712.3
MSC: 90C27,
05C85,
68W25 Поступила 11 декабря 2022 г., опубликована
12 декабря 2023 г.
DOI:
10.33048/semi.2023.20.056