RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2023, том 20, выпуск 2, страницы 1295–1312 (Mi semr1641)

Геометрия и топология

Complex and symplectic geometry of vector bundle manifolds

M. T. K. Abbassi, R. El Masdouri, I. Lakrini

Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco

Аннотация: The aim of this paper is to explore the complex and symplectic geometries of vector bundle manifolds. We will construct an almost complex structure on total spaces of vector bundles, endowed with a complex structure, over an almost complex base. Then we give necessary and sufficient conditions for its integrability. Meanwhile, we accomplish a symplectic version of this construction. We construct almost symplectic structures on vector bundle manifolds and we characterize those which are symplectic on the total space. Finally, we apply the constructions to the case of tangent bundles and Whitney sums. In particular, we obtain an infinite family of non-compact flat Kähler manifolds.

Ключевые слова: (almost) complex structure, symplectic structure, Kähler manifold, vector bundle, spherically symmetric metric.

УДК: 514.763.4

MSC: 53B35, 53C15, 53C55, 53D15

Поступила 1 декабря 2020 г., опубликована 25 ноября 2023 г.

Язык публикации: английский

DOI: 10.33048/semi.2023.20.078



© МИАН, 2024