RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2024, том 21, выпуск 1, страницы 363–369 (Mi semr1690)

Дискретная математика и математическая кибернетика

On cubic graphs having the maximum coalition number

A. A. Dobrynina, H. Golmohammadiab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova str., 2, 630090, Novosibirsk, Russia

Аннотация: A coalition in a graph $G$ with a vertex set $V$ consists of two disjoint sets $V_1, V_2\subset V$, such that neither $V_1$ nor $V_2$ is a dominating set, but the union $V_1\cup V_2$ is a dominating set in $G$. A partition of graph vertices is called a coalition partition $\mathcal{P}$ if every non-dominating set of $\mathcal{P}$ is a member of a coalition, and every dominating set is a single-vertex set. The coalition number $C(G)$ of a graph $G$ is the maximum cardinality of its coalition partitions. It is known that for cubic graphs $C(G) \le 9$. The existence of cubic graphs with the maximum coalition number is an unsolved problem. In this paper, an infinite family of cubic graphs satisfying $C(G)=9$ is constructed.

Ключевые слова: dominating set, coalition number, cubic graph.

УДК: 519.17

MSC: 05C69

Поступила 9 апреля 2024 г., опубликована 28 мая 2024 г.

Язык публикации: английский

DOI: doi.org/10.33048/semi.2024.21.027



© МИАН, 2024