Математическая логика, алгебра и теория чисел
On extensions of minimal logic with linearity axiom
D. M. Anishchenkoa,
S. P. Odintsovb a Novosibirsk State University, ul. Pirogova, 1, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Аннотация:
The Dummett logic is a superintuitionistic logic obtained by adding the linearity axiom to intuitionistic logic. This is one of the first non-classical logics, whose lattice of axiomatic extensions was completely described. In this paper we investigate the logic
$JC$ obtained via adding the linearity axiom to minimal logic of Johansson. So
$JC$ is a natural paraconsistent analog of the Dummett logic. We describe the lattice of
$JC$-extensions, prove that every element of this lattice is finitely axiomatizable, has the finite model property, and is decidable. Finally, we prove that
$JC$ has exactly two pretabular extensions.
Ключевые слова:
Dummett's logic, minimal logic, linearity axiom, lattice of extensions, algebraic semantics,
$j$-algebra, opremum, decidability, pretabularity.
УДК:
510.64
MSC: 03B20,
03B70 Поступила 23 июня 2024 г., опубликована
23 октября 2024 г.
DOI:
10.33048/semi.2024.21.056