RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2024, том 21, выпуск 2, страницы 852–865 (Mi semr1719)

Математическая логика, алгебра и теория чисел

On extensions of minimal logic with linearity axiom

D. M. Anishchenkoa, S. P. Odintsovb

a Novosibirsk State University, ul. Pirogova, 1, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Аннотация: The Dummett logic is a superintuitionistic logic obtained by adding the linearity axiom to intuitionistic logic. This is one of the first non-classical logics, whose lattice of axiomatic extensions was completely described. In this paper we investigate the logic $JC$ obtained via adding the linearity axiom to minimal logic of Johansson. So $JC$ is a natural paraconsistent analog of the Dummett logic. We describe the lattice of $JC$-extensions, prove that every element of this lattice is finitely axiomatizable, has the finite model property, and is decidable. Finally, we prove that $JC$ has exactly two pretabular extensions.

Ключевые слова: Dummett's logic, minimal logic, linearity axiom, lattice of extensions, algebraic semantics, $j$-algebra, opremum, decidability, pretabularity.

УДК: 510.64

MSC: 03B20,03B70

Поступила 23 июня 2024 г., опубликована 23 октября 2024 г.

DOI: 10.33048/semi.2024.21.056



© МИАН, 2025