RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2024, том 21, выпуск 2, страницы 914–926 (Mi semr1723)

Теория вероятностей и математическая статистика

Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph

A. V. Logachovab, A. A. Mogulskiia, A. A. Yambartsevc

a Lab. of Probability Theory and Math. Statistics, Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Dep. of Computer Science in Economics, Novosibirsk State Technical University pr. K. Marksa, 20, 630073, Novosibirsk, Russia
c Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, CEP o5508-090, São Paulo, SP, Brazil

Аннотация: We obtain a bound for the convergence rate in the central limit theorem for the number of triangles in a heterogeneous Erdős-Rényi graphs. Our approach is reminiscent of Hoeffding decomposition (a common technique in the theory of U-statistics). We show that the centered and normalized number of triangles asymptotically behaves as the normalized sum of centered independent random variables when the number of vertices increases. The proposed method is simple and intuitive.

Ключевые слова: Erdős-Rényi random graphs, central limit theorem, large deviations principle.

УДК: 519.21

MSC: 05C80, 60F05, 60F10

Поступила 7 марта 2024 г., опубликована 1 ноября 2024 г.

Язык публикации: английский

DOI: 10.33048/semi.2024.21.060



© МИАН, 2025