RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2011, том 8, страницы 116–122 (Mi semr309)

Transparent Ore extensions over weak $\sigma$-rigid rings

V. K. Bhat, Kiran Chib

School of Mathematics, SMVD University, Katra, 182320, J and K, India

Аннотация: Recall that a Noetherian ring $R$ is said to be a Transparent ring if there exist irreducible ideals $I_j$, $1\leq j\leq n$ such that $\bigcap_{j=1}^n I_j = 0$ and each $R/I_j$ has a right Artinian quotient ring. Let $R$ be a commutative Noetherian ring, which is also an algebra over $\mathbb Q$ (the field of rational numbers); $\sigma$ an automorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$. Also let $R$ be a weak $\sigma$-rigid ring (i.e. $a\sigma(a)\in N(R)$ if and only if $a\in N(R)$, where $N(R)$ the set of nilpotent elements of R). Then we prove that $R[x;\sigma,\delta]$ is a Transparent ring.

Ключевые слова: automorphism, $\sigma$-derivation, weak $\sigma$-rigid ring, quotient ring, transparent ring.

УДК: 512.552.24

MSC: 16S36

Поступила 26 мая 2011 г., опубликована 23 июня 2011 г.

Язык публикации: английский



© МИАН, 2024