RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2013, том 10, страницы 583–590 (Mi semr452)

Эта публикация цитируется в 3 статьях

Геометрия и топология

Amenability of Closed Subgroups and Orlicz Spaces

Ya A. Kopylovab

a Sobolev Institute of Mathematics, Prospekt Akad. Koptyuga 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia

Аннотация: We prove that a closed subgroup $H$ of a second countable locally compact group $G$ is amenable if and only if its left regular representation on an Orlicz space $L^\Phi(G)$ for some $\Delta_2$-regular $N$-function $\Phi$ almost has invariant vectors. We also show that a noncompact second countable locally compact group $G$ is amenable if and ony if the first cohomology space $H^1(G,L^\Phi(G))$ is non-Hausdorff for some $\Delta_2$-regular $N$-function $\Phi$.

Ключевые слова: locally compact group, amenable group, second countable group, closed subgroup, $N$-function, Orlicz space, 1-cohomology.

УДК: 512.546.3

MSC: 22D10,46E30

Язык публикации: английский



© МИАН, 2024