Вычислительная математика
Cпектр одного трехчастичного модельного оператора на решетке с нелокальными потенциалами
Т. Х. Расулов,
З. Д. Расулова Bukhara State University, Muhammad Igbol, 11, 705018 Bukhara, Uzbekistan
Аннотация:
A model operator
$H$ associated to a system of three particles on a
${\rm d}$-dimensional lattice that interact via non-local potentials is considered. The channel operators are identified. An analogue of the Faddeev equation for the eigenfunctions of
$H$ is constructed and the spectrum of
$H$ is described. The location of the essential spectrum of
$H$ is described by the spectrum of channel operators. It is shown that the essential spectrum of
$H$ consists the union of at most
$2n+1$ bounded closed intervals, where
$n$ is the rank of the kernel of non-local interaction operators. The upper bound of the spectrum of
$H$ is found. The lower bound of the essential spectrum of
$H$ for the case
${\rm d}=1$ is estimated.
Ключевые слова:
model operator, discrete Schrödinger operator, non-local interaction operators, Hubbard model, channel operator, Hilbert–Schmidt class, Faddeev equation, essential and discrete spectrum.
УДК:
517.984
MSC: 81Q10 Поступила 4 августа 2014 г., опубликована
14 марта 2015 г.
DOI:
10.17377/semi.2015.12.014