Эта публикация цитируется в
3 статьях
Математическая логика, алгебра и теория чисел
On Schur $3$-groups
G. K. Ryabov Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
Аннотация:
Let
$G$ be a finite group. An
$S$-ring
$\mathcal{A}$ over
$G$ is a subring of the group ring
$\mathbb{Z}G$ that has a linear basis associated with a special partition of
$G$. About 40 years ago R. Pöschel suggested the problem which can be formulated as follows: for which group
$G$ every
$S$-ring
$\mathcal{A}$ over it is schurian, i.e. the partition of
$G$ corresponding to
$\mathcal{A}$ consists of the orbits of the one point stabilizer of a permutation group in
$Sym(G)$ that contains a regular subgroup isomorphic to
$G$. The main result of the paper says that such
$G$ can not be non-abelian
$p$-group, where
$p$ is an odd prime. In fact, modulo known results, it was sufficient to show that for every
$n\geq3$ there exists a non-schurian
$S$-ring over the group $M_{3^n}=\langle a,b\;|\:a^{3^{n-1}}=b^3=e,a^b=a^{3^{n-2}+1}\rangle$.
Ключевые слова:
Permutation groups, Cayley schemes,
$S$-rings, Schur groups.
УДК:
512.542.3
MSC: 20B30,
05E30 Поступила 22 января 2015 г., опубликована
10 апреля 2015 г.
Язык публикации: английский
DOI:
10.17377/semi.2015.12.018