RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2017, том 14, страницы 986–993 (Mi semr840)

Геометрия и топология

On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics. II

A. P. Kopylovab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, ul. Pirogova, 2 630090, Novosibirsk, Russia

Аннотация: We prove the theorem on the unique determination of a strictly convex domain in $\mathbb R^n$, where $n \ge 2$, in the class of all $n$-dimensional domains by the condition of the local isometry of the Hausdorff boundaries in the relative metrics, which is a generalization of A. D. Aleksandrov's theorem on the unique determination of a strictly convex domain by the condition of the (global) isometry of the boundaries in the relative metrics.
We also prove that, in the cases of a plane domain $U$ with nonsmooth boundary and of a three-dimensional domain $A$ with smooth boundary, the convexity of the domain is no longer necessary for its unique determination by the condition of the local isometry of the boundaries in the relative metrics.

Ключевые слова: intrinsic metric, relative metric of the boundary, local isometry of the boundaries, strict convexity.

УДК: 514.772.35

MSC: 53C45

Поступила 28 декабря 2016 г., опубликована 29 сентября 2017 г.

Язык публикации: английский

DOI: 10.17377/semi.2017.14.083



Реферативные базы данных:


© МИАН, 2024