RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 023, 14 стр. (Mi sigma1004)

Эта публикация цитируется в 2 статьях

Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution

Yulia Bibiloa, Galina Filipukb

a Department of Theory of Information Transmission and Control, Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, Moscow, 127994, Russia
b Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw, 02-097, Poland

Аннотация: The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of order 5 by using middle convolution for a resonant Fuchsian system of order 2. Moreover, it is known that middle convolution is an operation that preserves Schlesinger's deformation equations for non-resonant Fuchsian systems. In this paper we show that Bolibruch's non-Schlesinger deformations of resonant Fuchsian systems are, in general, not preserved by middle convolution.

Ключевые слова: Middle convolution; isomonodromic deformation; non-Schlesinger isomonodromic deformation.

MSC: 34M56; 44A15

Поступила: 20 ноября 2014 г.; в окончательном варианте 4 марта 2015 г.; опубликована 13 марта 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.023



Реферативные базы данных:
ArXiv: 1503.03959


© МИАН, 2024