Эта публикация цитируется в
7 статьях
Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A
Yuki Kanakubo,
Toshiki Nakashima Division of Mathematics, Sophia University, Yonban-cho 4, Chiyoda-ku, Tokyo 102-0081, Japan
Аннотация:
Let
$G$ be a simply connected simple algebraic group over
$\mathbb{C}$,
$B$ and
$B_-$ be two opposite Borel subgroups in
$G$ and
$W$ be the Weyl group. For
$u$,
$v\in W$, it is known that the coordinate ring
${\mathbb C}[G^{u,v}]$ of the double Bruhat cell
$G^{u,v}=BuB\cap B_-vB_-$ is isomorphic to an upper cluster algebra
$\bar{\mathcal{A}}(\mathbf{i})_{{\mathbb C}}$ and the generalized minors
$\{\Delta(k;{\mathbf{i}})\}$ are the cluster variables belonging to a given initial seed in
${\mathbb C}[G^{u,v}]$ [Berenstein A., Fomin S., Zelevinsky A.,
Duke Math. J. 126 (2005), 1–52]. In the case
$G={\rm SL}_{r+1}({\mathbb C})$,
$v=e$ and some special
$u\in W$, we shall describe the generalized minors
$\{\Delta(k;{\mathbf{i}})\}$ as summations of monomial realizations of certain Demazure crystals.
Ключевые слова:
cluster variables; double Bruhat cells; crystal bases; monomial realizations, generalized minors.
MSC: 13F60;
81R50;
17B37 Поступила: 1 октября 2014 г.; в окончательном варианте
14 апреля 2015 г.; опубликована
23 апреля 2015 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2015.033