RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 034, 12 стр. (Mi sigma1015)

A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms

Dave Witte Morris

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada

Аннотация: A Lie algebra $\mathfrak{g}_\mathbb{Q}$ over $\mathbb{Q}$ is said to be $\mathbb{R}$-universal if every homomorphism from $\mathfrak{g}_\mathbb{Q}$ to $\mathfrak{gl}(n,\mathbb{R})$ is conjugate to a homomorphism into $\mathfrak{gl}(n,\mathbb{Q})$ (for every $n$). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an $\mathbb{R}$-universal $\mathbb{Q}$-form. We also provide a classification of the $\mathbb{R}$-universal Lie algebras that are semisimple.

Ключевые слова: semisimple Lie algebra; finite-dimensional representation; global field; Galois cohomology; linear algebraic group; Tits algebra.

MSC: 17B10; 17B20; 11E72; 20G30

Поступила: 17 октября 2014 г.; в окончательном варианте 14 апреля 2015 г.; опубликована 27 апреля 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.034



Реферативные базы данных:
ArXiv: 1410.2339


© МИАН, 2024