Аннотация:
A Lie algebra $\mathfrak{g}_\mathbb{Q}$ over $\mathbb{Q}$ is said to be $\mathbb{R}$-universal if every homomorphism from $\mathfrak{g}_\mathbb{Q}$ to $\mathfrak{gl}(n,\mathbb{R})$ is conjugate to a homomorphism into $\mathfrak{gl}(n,\mathbb{Q})$ (for every $n$). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an $\mathbb{R}$-universal $\mathbb{Q}$-form. We also provide a classification of the $\mathbb{R}$-universal Lie algebras that are semisimple.
Ключевые слова:semisimple Lie algebra; finite-dimensional representation; global field; Galois cohomology; linear algebraic
group; Tits algebra.