RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 075, 15 стр. (Mi sigma103)

Prolongation Loop Algebras for a Solitonic System of Equations

Maria A. Agrotis

Department of Mathematics and Statistics, University of Cyprus, Nicosia 1678, Cyprus

Аннотация: We consider an integrable system of reduced Maxwell–Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the $n$-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model is embedded in an infinite dimensional loop algebra. The dynamical equations of the model are associated to an infinite family of higher order Hamiltonian systems that are in involution. We present the Hamiltonian functions and the Poisson brackets between the extended potentials.

Ключевые слова: loop algebras; Bäcklund transformation; soliton solutions.

MSC: 37K10; 37N20; 35A30; 35Q60; 78A60

Поступила: 13 сентября 2006 г.; в окончательном варианте 1 ноября 2006 г.; опубликована 8 ноября 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.075



Реферативные базы данных:
ArXiv: math-ph/0611018


© МИАН, 2024