RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 066, 17 стр. (Mi sigma1047)

Эта публикация цитируется в 9 статьях

Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras

Alexey A. Magazev, Vitaly V. Mikheyev, Igor V. Shirokov

Omsk State Technical University, 11 Mira Ave., Omsk, 644050, Russia

Аннотация: Methods of construction of the composition function, left- and right-invariant vector fields and differential 1-forms of a Lie group from the structure constants of the associated Lie algebra are proposed. It is shown that in the second canonical coordinates these problems are reduced to the matrix inversions and matrix exponentiations, and the composition function can be represented in quadratures. Moreover, it is proven that the transition function from the first canonical coordinates to the second canonical coordinates can be found by quadratures.

Ключевые слова: Lie group; Lie algebra; left- and right-invariant vector fields; composition function; canonical coordinates.

MSC: 22E05; 22E60; 22E70

Поступила: 5 декабря 2013 г.; в окончательном варианте 25 июля 2015 г.; опубликована 6 августа 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.066



Реферативные базы данных:
ArXiv: 1312.0362


© МИАН, 2024