Эта публикация цитируется в
8 статьях
Equivariant Join and Fusion of Noncommutative Algebras
Ludwik Dąbrowskia,
Tom Hadfieldb,
Piotr M. Hajacc a SISSA (Scuola Internazionale Superiore di Studi Avanzati),
Via Bonomea 265, 34136 Trieste, Italy
b G-Research, Whittington House, 19-30 Alfred Place, London WC1E 7EA, UK
c Instytut Matematyczny, Polska Akademia Nauk, ul.Śniadeckich 8, 00-656 Warszawa, Poland
Аннотация:
We translate the concept of the join of topological spaces to the language of
$C^*$-algebras, replace the
$C^*$-algebra of functions on the interval
$[0,1]$ with evaluation maps at
$0$ and
$1$ by a unital
$C^*$-algebra
$C$ with appropriate two surjections, and introduce the notion of the
fusion of unital
$C^*$-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra
$P$ with the coacting Hopf algebra
$H$. We prove that, if the comodule algebra
$P$ is principal, then so is the fusion comodule algebra. When
$C=C([0,1])$ and the two surjections are evaluation maps at
$0$ and
$1$, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal
$G$-bundle
$X$, the diagonal action of
$G$ on the join
$X*G$ is free.
Ключевые слова:
$C^*$-algebras; Hopf algebras; free actions.
MSC: 46L85;
58B32 Поступила: 30 июня 2015 г.; в окончательном варианте
3 октября 2015 г.; опубликована
13 октября 2015 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2015.082