RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 021, 37 стр. (Mi sigma1103)

Эта публикация цитируется в 12 статьях

Classes of Bivariate Orthogonal Polynomials

Mourad E. H. Ismailab, Ruiming Zhangc

a Department of Mathematics, University of Central Florida, Orlando, Florida 32816, USA
b Department of Mathematics, King Saud University, Riyadh, Saudi Arabia
c College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China

Аннотация: We introduce a class of orthogonal polynomials in two variables which generalizes the disc polynomials and the 2-$D$ Hermite polynomials. We identify certain interesting members of this class including a one variable generalization of the 2-$D$ Hermite polynomials and a two variable extension of the Zernike or disc polynomials. We also give $q$-analogues of all these extensions. In each case in addition to generating functions and three term recursions we provide raising and lowering operators and show that the polynomials are eigenfunctions of second-order partial differential or $q$-difference operators.

Ключевые слова: disc polynomials; Zernike polynomials; 2$D$-Laguerre polynomials; $q$-2$D$-Laguerre polynomials; generating functions; ladder operators; $q$-Sturm–Liouville equations; $q$-integrals; $q$-Zernike polynomials; 2$D$-Jacobi polynomials; $q$-2$D$-Jacobi polynomials; connection relations; biorthogonal functions; generating functions; Rodrigues formulas; zeros.

MSC: 33C50; 33D50; 33C45; 33D45

Поступила: 4 августа 2015 г.; в окончательном варианте 15 февраля 2016 г.; опубликована 24 февраля 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.021



Реферативные базы данных:
ArXiv: 1502.07256


© МИАН, 2024