RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 046, 22 стр. (Mi sigma1128)

Эта публикация цитируется в 2 статьях

The Asymptotic Expansion of Kummer Functions for Large Values of the $a$-Parameter, and Remarks on a Paper by Olver

Hans Volkmer

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI, 53201, USA

Аннотация: It is shown that a known asymptotic expansion of the Kummer function $U(a,b,z)$ as $a$ tends to infinity is valid for $z$ on the full Riemann surface of the logarithm. A corresponding result is also proved in a more general setting considered by Olver (1956).

Ключевые слова: Kummer functions; asymptotic expansions.

MSC: 33B20; 33C15; 41A60

Поступила: 10 января 2016 г.; в окончательном варианте 1 мая 2016 г.; опубликована 6 мая 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.046



Реферативные базы данных:
ArXiv: 1601.02263


© МИАН, 2024