RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 053, 20 стр. (Mi sigma1135)

Эта публикация цитируется в 3 статьях

Universal Lie Formulas for Higher Antibrackets

Marco Manettia, Giulia Ricciardibc

a Dipartimento di Matematica “Guido Castelnuovo”, Università degli studi di Roma La Sapienza, P. le Aldo Moro 5, I-00185 Roma, Italy
b Dipartimento di Fisica “E. Pancini”, Università degli studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
c NFN, Sezione di Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli, Italy

Аннотация: We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator $\Delta$ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis–Richardson brackets having as arguments $\Delta$ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities.

Ключевые слова: Lie superalgebras; higher brackets.

MSC: 17B60; 17B70

Поступила: 17 ноября 2015 г.; в окончательном варианте 31 мая 2016 г.; опубликована 6 июня 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.053



Реферативные базы данных:
ArXiv: 1509.09032


© МИАН, 2024