RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 075, 17 стр. (Mi sigma1157)

Orthogonal Polynomials Associated with Complementary Chain Sequences

Kiran Kumar Beheraa, A. Sri Rangab, A. Swaminathana

a Department of Mathematics, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
b Departamento de Matemática Aplicada, IBILCE, UNESP-Univ. Estadual Paulista, 15054-000, São José do Rio Preto, SP, Brazil

Аннотация: Using the minimal parameter sequence of a given chain sequence, we introduce the concept of complementary chain sequences, which we view as perturbations of chain sequences. Using the relation between these complementary chain sequences and the corresponding Verblunsky coefficients, the para-orthogonal polynomials and the associated Szegő polynomials are analyzed. Two illustrations, one involving Gaussian hypergeometric functions and the other involving Carathéodory functions are also provided. A connection between these two illustrations by means of complementary chain sequences is also observed.

Ключевые слова: chain sequences; orthogonal polynomials; recurrence relation; Verblunsky coefficients; continued fractions; Carathéodory functions; hypergeometric functions.

MSC: 42C05; 33C45; 30B70

Поступила: 17 марта 2016 г.; в окончательном варианте 22 июля 2016 г.; опубликована 27 июля 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.075



Реферативные базы данных:
ArXiv: 1601.06898


© МИАН, 2024