RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 088, 12 стр. (Mi sigma1170)

A Duflo Star Product for Poisson Groups

Adrien Brochier

MPIM Bonn, Germany

Аннотация: Let $G$ be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of $G$ provided by an Etingof–Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on $G$. This recovers and generalizes Duflo's theorem which gives an isomorphism between the center of the enveloping algebra of a finite-dimensional Lie algebra $\mathfrak{a}$ and the subalgebra of ad-invariant in the symmetric algebra of $\mathfrak{a}$. As our proof relies on Etingof–Kazhdan construction it ultimately depends on the existence of Drinfeld associators, but otherwise it is a fairly simple application of graphical calculus. This shed some lights on Alekseev–Torossian proof of the Kashiwara–Vergne conjecture, and on the relation observed by Bar-Natan–Le–Thurston between the Duflo isomorphism and the Kontsevich integral of the unknot.

Ключевые слова: quantum groups; knot theory; Duflo isomorphism.

MSC: 20G42; 17B37; 53D55

Поступила: 18 мая 2016 г.; в окончательном варианте 5 сентября 2016 г.; опубликована 8 сентября 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.088



Реферативные базы данных:
ArXiv: 1604.08450


© МИАН, 2024