RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 106, 30 стр. (Mi sigma1188)

Эта публикация цитируется в 6 статьях

Polarisation of Graded Bundles

Andrew James Brucea, Janusz Grabowskia, Mikołaj Rotkiewiczb

a Institute of Mathematics, Polish Academy of Sciences, Poland
b Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Аннотация: We construct the full linearisation functor which takes a graded bundle of degree $k$ (a particular kind of graded manifold) and produces a $k$-fold vector bundle. We fully characterise the image of the full linearisation functor and show that we obtain a subcategory of $k$-fold vector bundles consisting of symmetric $k$-fold vector bundles equipped with a family of morphisms indexed by the symmetric group ${\mathbb S}_k$. Interestingly, for the degree 2 case this additional structure gives rise to the notion of a symplectical double vector bundle, which is the skew-symmetric analogue of a metric double vector bundle. We also discuss the related case of fully linearising $N$-manifolds, and how one can use the full linearisation functor to “superise” a graded bundle.

Ключевые слова: graded manifolds; $N$-manifolds; $k$-fold vector bundles; polarisation; supermanifolds.

MSC: 55R10; 58A32; 58A50

Поступила: 14 декабря 2015 г.; в окончательном варианте 25 октября 2016 г.; опубликована 2 ноября 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.106



Реферативные базы данных:
ArXiv: 1512.02345


© МИАН, 2024