RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 005, 42 стр. (Mi sigma1205)

Эта публикация цитируется в 4 статьях

Twistor Geometry of Null Foliations in Complex Euclidean Space

Arman Taghavi-Chabert

Università di Torino, Dipartimento di Matematica ''G. Peano'', Via Carlo Alberto, 10 - 10123, Torino, Italy

Аннотация: We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface $\mathcal{Q}^n$ of dimension $n \geq 3$, and its twistor space $\mathbb{PT}$, defined to be the space of all linear subspaces of maximal dimension of $\mathcal{Q}^n$. Viewing complex Euclidean space $\mathbb{CE}^n$ as a dense open subset of $\mathcal{Q}^n$, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on $\mathbb{CE}^n$ can be constructed in terms of complex submanifolds of $\mathbb{PT}$. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing–Yano $2$-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.

Ключевые слова: twistor geometry; complex variables; foliations; spinors.

MSC: 32L25; 53C28; 53C12

Поступила: 1 апреля 2016 г.; в окончательном варианте 14 января 2017 г.; опубликована 23 января 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.005



Реферативные базы данных:
ArXiv: 1505.06938


© МИАН, 2024