RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 035, 26 стр. (Mi sigma1235)

Эта публикация цитируется в 12 статьях

Liouville Correspondences between Integrable Hierarchies

Jing Kanga, Xiaochuan Liua, Peter J. Olverb, Changzheng Quc

a Center for Nonlinear Studies and School of Mathematics, Northwest University, Xi'an 710069, P.R. China
b School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
c Center for Nonlinear Studies and Department of Mathematics, Ningbo University, Ningbo 315211, P.R. China

Аннотация: In this paper, we study explicit correspondences between the integrable Novikov and Sawada–Kotera hierarchies, and between the Degasperis–Procesi and Kaup–Kupershmidt hierarchies. We show how a pair of Liouville transformations between the isospectral problems of the Novikov and Sawada–Kotera equations, and the isospectral problems of the Degasperis–Procesi and Kaup–Kupershmidt equations relate the corresponding hierarchies, in both positive and negative directions, as well as their associated conservation laws. Combining these results with the Miura transformation relating the Sawada–Kotera and Kaup–Kupershmidt equations, we further construct an implicit relationship which associates the Novikov and Degasperis–Procesi equations.

Ключевые слова: Liouville transformation; Miura transformation; bi-Hamiltonian structure; conservation law; Novikov equation; Degasperis–Procesi equation; Sawada–Kotera equation; Kaup–Kupershmidt equation.

MSC: 37K05; 37K10

Поступила: 7 февраля 2017 г.; в окончательном варианте 22 мая 2017 г.; опубликована 28 мая 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.035



Реферативные базы данных:
ArXiv: 1702.01227


© МИАН, 2024