RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 040, 41 стр. (Mi sigma1240)

Эта публикация цитируется в 2 статьях

A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus

Charles F. Dunkl

Department of Mathematics, University of Virginia, PO Box 400137, Charlottesville VA 22904-4137, USA

Аннотация: For each irreducible module of the symmetric group $\mathcal{S}_{N}$ there is a set of parametrized nonsymmetric Jack polynomials in $N$ variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to two Hermitian forms, one called the contravariant form and the other is with respect to a matrix-valued measure on the $N$-torus. The latter is valid for the parameter lying in an interval about zero which depends on the module. The author in a previous paper [SIGMA 12 (2016), 033, 27 pages] proved the existence of the measure and that its absolutely continuous part satisfies a system of linear differential equations. In this paper the system is analyzed in detail. The $N$-torus is divided into $(N-1)!$ connected components by the hyperplanes $x_{i}=x_{j}$, $i<j$, which are the singularities of the system. The main result is that the orthogonality measure has no singular part with respect to Haar measure, and thus is given by a matrix function times Haar measure. This function is analytic on each of the connected components.

Ключевые слова: nonsymmetric Jack polynomials; matrix-valued weight function; symmetric group modules.

MSC: 33C52; 32W50; 35F35; 20C30; 42B05

Поступила: 11 декабря 2016 г.; в окончательном варианте 2 июня 2017 г.; опубликована 8 июня 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.040



Реферативные базы данных:


© МИАН, 2024