RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 047, 17 стр. (Mi sigma1247)

Эта публикация цитируется в 6 статьях

Check-Operators and Quantum Spectral Curves

Andrei Mironovabcd, Alexei Morozovdbc

a Lebedev Physics Institute, Moscow, 119991, Russia
b ITEP, Moscow, 117218, Russia
c Institute for Information Transmission Problems, Moscow, 127994, Russia
d National Research Nuclear University MEPhI, Moscow, 115409, Russia

Аннотация: We review the basic properties of effective actions of families of theories (i.e., the actions depending on additional non-perturbative moduli along with perturbative couplings), and their description in terms of operators (called check-operators), which act on the moduli space. It is this approach that led to constructing the (quantum) spectral curves and what is now nicknamed the EO/AMM topological recursion. We explain how the non-commutative algebra of check-operators is related to the modular kernels and how symplectic (special) geometry emerges from it in the classical (Seiberg–Witten) limit, where the quantum integrable structures turn into the well studied classical integrability. As time goes, these results turn applicable to more and more theories of physical importance, supporting the old idea that many universality classes of low-energy effective theories contain matrix model representatives.

Ключевые слова: matrix models; check-operators; Seiberg–Witten theory; modular kernel in CFT.

MSC: 14H70; 81R10; 81R12; 81T13

Поступила: 29 января 2017 г.; в окончательном варианте 19 июня 2017 г.; опубликована 26 июня 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.047



Реферативные базы данных:


© МИАН, 2024