RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 090, 49 стр. (Mi sigma1290)

Эта публикация цитируется в 2 статьях

Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle

Adhemar Bultheela, Ruyman Cruz-Barrosob, Andreas Lasarowc

a Department of Computer Science, KU Leuven, Belgium
b Department of Mathematical Analysis, La Laguna University, Tenerife, Spain
c Fak. Informatik, Mathematik & Naturwissenschaften, HTWK Leipzig, Germany

Аннотация: Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained.

Ключевые слова: orthogonal rational functions; rational Szegő quadrature; spectral method; rational Krylov method; AMPD matrix.

MSC: 30D15; 30E05; 42C05; 44A60

Поступила: 1 августа 2017 г.; в окончательном варианте 20 ноября 2017 г.; опубликована 3 декабря 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.090



Реферативные базы данных:


© МИАН, 2024