RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 002, 49 стр. (Mi sigma1301)

Эта публикация цитируется в 12 статьях

Poles of Painlevé IV Rationals and their Distribution

Davide Masoeroa, Pieter Roffelsenb

a Grupo de Física Matemática e Departamento de Matemática da Universidade de Lisboa, Campo Grande Edifício C6, 1749-016 Lisboa, Portugal
b School of Mathematics and Statistics F07, The University of Sydney, NSW 2006, Australia

Аннотация: We study the distribution of singularities (poles and zeros) of rational solutions of the Painlevé IV equation by means of the isomonodromic deformation method. Singularities are expressed in terms of the roots of generalised Hermite $H_{m,n}$ and generalised Okamoto $Q_{m,n}$ polynomials. We show that roots of generalised Hermite and Okamoto polynomials are described by an inverse monodromy problem for an anharmonic oscillator of degree two. As a consequence they turn out to be classified by the monodromy representation of a class of meromorphic functions with a finite number of singularities introduced by Nevanlinna. We compute the asymptotic distribution of roots of the generalised Hermite polynomials in the asymptotic regime when $m$ is large and $n$ fixed.

Ключевые слова: Painlevé fourth equation; singularities of Painlevé transcendents; isomonodromic deformations; generalised Hermite polynomials; generalised Okamoto polynomials.

MSC: 34M55; 34M56; 34M60; 33C15; 30C15

Поступила: 20 июля 2017 г.; в окончательном варианте 18 декабря 2017 г.; опубликована 6 января 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.002



Реферативные базы данных:


© МИАН, 2024