RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 011, 32 стр. (Mi sigma1310)

Эта публикация цитируется в 3 статьях

Series Solutions of the Non-Stationary Heun Equation

Farrokh Ataiab, Edwin Langmannb

a Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
b Department of Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden

Аннотация: We consider the non-stationary Heun equation, also known as quantum Painlevé VI, which has appeared in different works on quantum integrable models and conformal field theory. We use a generalized kernel function identity to transform the problem to solve this equation into a differential-difference equation which, as we show, can be solved by efficient recursive algorithms. We thus obtain series representations of solutions which provide elliptic generalizations of the Jacobi polynomials. These series reproduce, in a limiting case, a perturbative solution of the Heun equation due to Takemura, but our method is different in that we expand in non-conventional basis functions that allow us to obtain explicit formulas to all orders; in particular, for special parameter values, our series reduce to a single term.

Ключевые слова: Heun equation; Lamé equation; Kernel functions; quantum Painlevé VI; perturbation theory.

MSC: 33E20; 81Q05; 16R60

Поступила: 10 октября 2017 г.; в окончательном варианте 8 февраля 2018 г.; опубликована 16 февраля 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.011



Реферативные базы данных:


© МИАН, 2024