RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 012, 33 стр. (Mi sigma1311)

Эта публикация цитируется в 4 статьях

$k$-Dirac Complexes

Tomáš Salač

Mathematical Institute, Charles University, Sokolovská 49/83, Prague, Czech Republic

Аннотация: This is the first paper in a series of two papers. In this paper we construct complexes of invariant differential operators which live on homogeneous spaces of $|2|$-graded parabolic geometries of some particular type. We call them $k$-Dirac complexes. More explicitly, we will show that each $k$-Dirac complex arises as the direct image of a relative BGG sequence and so this fits into the scheme of the Penrose transform. We will also prove that each $k$-Dirac complex is formally exact, i.e., it induces a long exact sequence of infinite (weighted) jets at any fixed point. In the second part of the series we use this information to show that each $k$-Dirac complex is exact at the level of formal power series at any point and that it descends to a resolution of the $k$-Dirac operator studied in Clifford analysis.

Ключевые слова: Penrose transform; complexes of invariant differential operators; relative BGG complexes; formal exactness; weighted jets.

MSC: 58J10; 32N05; 32L25; 35A22; 53C28; 58A20

Поступила: 1 июня 2017 г.; в окончательном варианте 6 февраля 2018 г.; опубликована 16 февраля 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.012



Реферативные базы данных:


© МИАН, 2024