RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 022, 37 стр. (Mi sigma1321)

Эта публикация цитируется в 6 статьях

Poisson Algebras and 3D Superintegrable Hamiltonian Systems

Allan P. Fordya, Qing Huangb

a School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
b School of Mathematics, Northwest University, Xi'an 710069, People's Republic of China

Аннотация: Using a Poisson bracket representation, in 3D, of the Lie algebra $\mathfrak{sl}(2)$, we first use highest weight representations to embed this into larger Lie algebras. These are then interpreted as symmetry and conformal symmetry algebras of the “kinetic energy”, related to the quadratic Casimir function. We then consider the potentials which can be added, whilst remaining integrable, leading to families of separable systems, depending upon arbitrary functions of a single variable. Adding further integrals, in the superintegrable case, restricts these functions to specific forms, depending upon a finite number of arbitrary parameters. The Poisson algebras of these superintegrable systems are studied. The automorphisms of the symmetry algebra of the kinetic energy are extended to the full Poisson algebra, enabling us to build the full set of Poisson relations.

Ключевые слова: Hamiltonian system; super-integrability; Poisson algebra; conformal algebra; constant curvature.

MSC: 17B63; 37J15; 37J35; 70G45; 70G65; 70H06

Поступила: 24 августа 2017 г.; в окончательном варианте 6 марта 2018 г.; опубликована 16 марта 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.022



Реферативные базы данных:


© МИАН, 2024