Аннотация:
For the standard metric on the six-dimensional sphere, with Levi-Civita connection $\nabla$, we show there is no almost complex structure $J$ such that $\nabla_X J$ and $\nabla_{JX} J$ commute for every $X$, nor is there any integrable $J$ such that $\nabla_{JX} J = J \nabla_X J$ for every $X$. The latter statement generalizes a previously known result on the non-existence of integrable orthogonal almost complex structures on the six-sphere. Both statements have refined versions, expressed as intrinsic first order differential inequalities depending only on $J$ and the metric. The new techniques employed include an almost-complex analogue of the Gauss map, defined for any almost complex manifold in Euclidean space.
Ключевые слова:six-sphere; almost complex; integrable.