RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 034, 21 стр. (Mi sigma1333)

Results Concerning Almost Complex Structures on the Six-Sphere

Scott O. Wilson

Department of Mathematics, Queens College, City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA

Аннотация: For the standard metric on the six-dimensional sphere, with Levi-Civita connection $\nabla$, we show there is no almost complex structure $J$ such that $\nabla_X J$ and $\nabla_{JX} J$ commute for every $X$, nor is there any integrable $J$ such that $\nabla_{JX} J = J \nabla_X J$ for every $X$. The latter statement generalizes a previously known result on the non-existence of integrable orthogonal almost complex structures on the six-sphere. Both statements have refined versions, expressed as intrinsic first order differential inequalities depending only on $J$ and the metric. The new techniques employed include an almost-complex analogue of the Gauss map, defined for any almost complex manifold in Euclidean space.

Ключевые слова: six-sphere; almost complex; integrable.

MSC: 53C15; 32Q60; 53A07

Поступила: 20 ноября 2017 г.; в окончательном варианте 9 апреля 2018 г.; опубликована 17 апреля 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.034



Реферативные базы данных:


© МИАН, 2024