RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 038, 21 стр. (Mi sigma1337)

Эта публикация цитируется в 1 статье

Homomorphisms from Specht Modules to Signed Young Permutation Modules

Kay Jin Lima, Kai Meng Tanb

a Division of Mathematical Sciences, Nanyang Technological University, SPMS-PAP-03-01, 21 Nanyang Link, 637371 Singapore
b Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, 119076 Singapore

Аннотация: We construct a class $\Theta_{\mathscr{R}}$ of homomorphisms from a Specht module $S_{\mathbb{Z}}^{\lambda}$ to a signed permutation module $M_{\mathbb{Z}}(\alpha|\beta)$ which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any $\phi \in \mathrm{Hom}_{{\mathbb{Z}}\mathfrak{S}_n}\big(S_{\mathbb{Z}}^\lambda, M_{\mathbb{Z}}(\alpha|\beta)\big)$ lies in the $\mathbb{Q}$-span of $\Theta_{\text{sstd}}$, a subset of $\Theta_{\mathbb{R}}$ corresponding to semistandard $\lambda$-tableaux of type $(\alpha|\beta)$. We also study the conditions for which $\Theta^{\mathbb{Z}}_{\mathrm{sstd}}$ – a subset of $\mathrm{Hom}_{{\mathbb{Z}}\mathfrak{S}_n}\big(S_{\mathbb{Z}}^\lambda,M_{\mathbb{Z}}(\alpha|\beta)\big)$ induced by $\Theta_{\mathrm{sstd}}$ – is linearly independent, and show that it is a basis for $\mathrm{Hom}_{{\mathbb{Z}}\mathfrak{S}_n}\big(S_{\mathbb{Z}}^\lambda,M_{\mathbb{Z}}(\alpha|\beta)\big)$ when ${\mathbb{Z}}\mathfrak{S}_n$ is semisimple.

Ключевые слова: symmetric group; Specht module; signed Young permutation module; homomorphism.

MSC: 20C30

Поступила: 14 июля 2017 г.; в окончательном варианте 18 апреля 2018 г.; опубликована 25 апреля 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.038



Реферативные базы данных:


© МИАН, 2024