RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 108, 17 стр. (Mi sigma1407)

Hyper-Algebras of Vector-Valued Modular Forms

Martin Raum

Chalmers tekniska högskola och Göteborgs Universitet, Institutionen för Matematiska vetenskaper, SE-412 96 Göteborg, Sweden

Аннотация: We define graded hyper-algebras of vector-valued Siegel modular forms, which allow us to study tensor products of the latter. We also define vector-valued Hecke operators for Siegel modular forms at all places of ${\mathbb Q}$, acting on these hyper-algebras. These definitions bridge the classical and representation theoretic approach to Siegel modular forms. Combining both the product structure and the action of Hecke operators, we prove in the case of elliptic modular forms that all cusp forms of sufficiently large weight can be obtained from products involving only two fixed Eisenstein series. As a byproduct, we obtain inclusions of cuspidal automorphic representations into the tensor product of global principal series.

Ключевые слова: Siegel modular forms; vector-valued Hecke operators; automorphic representations.

MSC: 11F40; 11F60; 11F70

Поступила: 7 мая 2018 г.; в окончательном варианте 30 сентября 2018 г.; опубликована 4 октября 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.108



Реферативные базы данных:


© МИАН, 2024