RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2018, том 14, 112, 14 стр. (Mi sigma1411)

Эта публикация цитируется в 3 статьях

Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative

Rafaela N. Bonfima, Jean C. Guellab, Valdir A. Menegattob

a DEMAT-Universidade Federal de São João Del Rei, Praça Frei Orlando, 170, Centro, 36307-352 São João del Rei - MG, Brazil
b Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos - SP, Brazil

Аннотация: For two continuous and isotropic positive definite kernels on the same compact two-point homogeneous space, we determine necessary and sufficient conditions in order that their product be strictly positive definite. We also provide a similar characterization for kernels on the space-time setting $G \times S^d$, where $G$ is a locally compact group and $S^d$ is the unit sphere in $\mathbb{R}^{d+1}$, keeping isotropy of the kernels with respect to the $S^d$ component. Among other things, these results provide new procedures for the construction of valid models for interpolation and approximation on compact two-point homogeneous spaces.

Ключевые слова: strict positive definiteness; spheres; product kernels; linearization formulas; isotropy.

MSC: 33C45; 42A82; 42C10; 43A35

Поступила: 8 марта 2018 г.; в окончательном варианте 10 октября 2018 г.; опубликована 16 октября 2018 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2018.112



Реферативные базы данных:
ArXiv: 1803.03105


© МИАН, 2024