RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 061, 29 стр. (Mi sigma1497)

Loop Equations for Gromov–Witten Invariant of $\mathbb{P}^1$

Gaëtan Borota, Paul Norburyb

a Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
b School of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia

Аннотация: We show that non-stationary Gromov–Witten invariants of $\mathbb{P}^1$ can be extracted from open periods of the Eynard–Orantin topological recursion correlators $\omega_{g,n}$ whose Laurent series expansion at $\infty$ compute the stationary invariants. To do so, we overcome the technical difficulties to global loop equations for the spectral $x(z) = z + 1/z$ and $y(z) = \mathrm{ln}\, z$ from the local loop equations satisfied by the $\omega_{g,n}$, and check these global loop equations are equivalent to the Virasoro constraints that are known to govern the full Gromov–Witten theory of $\mathbb{P}^1$.

Ключевые слова: Virasoro constraints, topological recursion, Gromov–Witten theory, mirror symmetry.

MSC: 32G15, 14D23, 53D45

Поступила: 16 мая 2019 г.; в окончательном варианте 14 августа 2019 г.; опубликована 23 августа 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.061



Реферативные базы данных:
ArXiv: 1905.01890


© МИАН, 2024