RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2019, том 15, 091, 10 стр. (Mi sigma1527)

Эта публикация цитируется в 2 статьях

Locally Nilpotent Derivations of Free Algebra of Rank Two

Vesselin Drenskya, Leonid Makar-Limanovbc

a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
b Department of Mathematics, Wayne State University Detroit, MI 48202, USA
c Department of Mathematics, The Weizmann Institute of Science, Rehovot 7610001, Israel

Аннотация: In commutative algebra, if $\delta$ is a locally nilpotent derivation of the polynomial algebra $K[x_1,\ldots,x_d]$ over a field $K$ of characteristic 0 and $w$ is a nonzero element of the kernel of $\delta$, then $\Delta=w\delta$ is also a locally nilpotent derivation with the same kernel as $\delta$. In this paper we prove that the locally nilpotent derivation $\Delta$ of the free associative algebra $K\langle X,Y\rangle$ is determined up to a multiplicative constant by its kernel. We show also that the kernel of $\Delta$ is a free associative algebra and give an explicit set of its free generators.

Ключевые слова: free associative algebras, locally nilpotent derivations, algebras of constants.

MSC: 16S10; 16W25; 16W20; 13N15

Поступила: 1 октября 2019 г.; в окончательном варианте 13 ноября 2019 г.; опубликована 18 ноября 2019 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2019.091



Реферативные базы данных:
ArXiv: 1909.13262


© МИАН, 2024