Эта публикация цитируется в	
			3 статьях
				
			
				The Real Jacobi Group Revisited
			
			Stefan Berceanu		 National Institute for Physics and Nuclear Engineering, Department of Theoretical Physics, PO BOX MG-6, Bucharest-Magurele, Romania
					
			Аннотация:
			The real Jacobi group 
$G^J_1(\mathbb{R})$, defined as the semi-direct product of the group 
${\rm SL}(2,\mathbb{R})$ with the Heisenberg group 
$H_1$, is embedded in a 
$4\times 4$ matrix realisation of the group 
${\rm Sp}(2,\mathbb{R})$. The left-invariant one-forms on 
$G^J_1(\mathbb{R})$ and their dual orthogonal left-invariant vector fields are calculated in the 
$\mathrm{S}$-coordinates 
$(x,y,\theta,p,q,\kappa)$, and a left-invariant metric depending of 
$4$ parameters 
$(\alpha,\beta,\gamma,\delta)$ is obtained. An invariant metric depending of 
$(\alpha,\beta)$ in the variables 
$(x,y,\theta)$ on the Sasaki manifold 
${\rm SL}(2,\mathbb{R})$ is presented. The well known Kähler balanced metric in the variables 
$(x,y,p,q)$ of the four-dimensional Siegel–Jacobi upper half-plane $\mathcal{X}^J_1=\frac{G^J_1(\mathbb{R})}{{\rm SO}(2) \times\mathbb{R}} \approx\mathcal{X}_1 \times\mathbb{R}^2$ depending of 
$(\alpha,\gamma)$ is written down as sum of the squares of four invariant one-forms, where 
$\mathcal{X}_1$ denotes the Siegel upper half-plane. The left-invariant metric in the variables 
$(x,y,p,q,\kappa)$ depending on 
$(\alpha,\gamma,\delta)$ of a five-dimensional manifold $\tilde{\mathcal{X}}^J_1= \frac{G^J_1(\mathbb{R})}{{\rm SO}(2)}\approx\mathcal{X}_1\times\mathbb{R}^3$ is determined.
				
			
Ключевые слова:
			Jacobi group, invariant metric, Siegel–Jacobi upper half-plane, balanced metric, extended Siegel–Jacobi upper half-plane, naturally reductive manifold.	
			
MSC: 32F45, 
32Q15, 
53C25, 
53C22	Поступила: 9 мая 2019 г.; в окончательном варианте 
25 ноября 2019 г.; опубликована 
7 декабря 2019 г.	
			Язык публикации: английский	
			
DOI:
			10.3842/SIGMA.2019.096