RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 002, 47 стр. (Mi sigma1539)

Эта публикация цитируется в 9 статьях

The Schwarz–Voronov Embedding of ${\mathbb Z}_{2}^{n}$-Manifolds

Andrew James Bruce, Eduardo Ibarguengoytia, Norbert Poncin

Mathematics Research Unit, University of Luxembourg, Maison du Nombre 6, avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

Аннотация: Informally, ${\mathbb Z}_2^n$-manifolds are ‘manifolds’ with ${\mathbb Z}_2^n$-graded coordinates and a sign rule determined by the standard scalar product of their ${\mathbb Z}_2^n$-degrees. Such manifolds can be understood in a sheaf-theoretic framework, as supermanifolds can, but with significant differences, in particular in integration theory. In this paper, we reformulate the notion of a ${\mathbb Z}_2^n$-manifold within a categorical framework via the functor of points. We show that it is sufficient to consider ${\mathbb Z}_2^n$-points, i.e., trivial ${\mathbb Z}_2^n$-manifolds for which the reduced manifold is just a single point, as ‘probes’ when employing the functor of points. This allows us to construct a fully faithful restricted Yoneda embedding of the category of ${\mathbb Z}_2^n$-manifolds into a subcategory of contravariant functors from the category of ${\mathbb Z}_2^n$-points to a category of Fréchet manifolds over algebras. We refer to this embedding as the Schwarz–Voronov embedding. We further prove that the category of ${\mathbb Z}_2^n$-manifolds is equivalent to the full subcategory of locally trivial functors in the preceding subcategory.

Ключевые слова: supergeometry, superalgebra, ringed spaces, higher grading, functor of points.

MSC: 58C50, 58D1, 14A22

Поступила: 10 июля 2019 г.; в окончательном варианте 30 декабря 2019 г.; опубликована 8 января 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.002



Реферативные базы данных:
ArXiv: 1906.09834


© МИАН, 2024